These samples were run by seq2science v0.9.8, a tool for easy preprocessing of NGS data.
Take a look at our docs for info about how to use this report to the fullest.
- Workflow
- rna-seq
- Date
- April 03, 2023
- Project
- seq2science
- Contact E-mail
- yourmail@here.com
Report generated on 2023-04-03, 16:41 CEST based on data in:
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/markdup/xenLae2-GSM2050749.samtools-coordinate.metrics.txt
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/assembly_xenLae2_stats_mqc.html
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/samtools_stats/star/xenLae2-GSM2050746.samtools-coordinate.samtools_stats.txt
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/samtools_stats/star/xenLae2-GSM2050744.samtools-coordinate.samtools_stats.txt
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/InsertSizeMetrics/xenLae2-GSM2050749.tsv
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/samtools_stats/final_bam/xenLae2-GSM2050746.samtools-coordinate.samtools_stats.txt
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/deseq2/xenLae2-deseq2_ddk1_control.combined_ma_volcano_mqc.png
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/samtools_stats/final_bam/xenLae2-GSM2050748.samtools-coordinate.samtools_stats.txt
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/deseq2/xenLae2-deseq2_ddk1_control.pca_plot_mqc.png
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/samtools_stats/star/xenLae2-GSM2050749.samtools-coordinate.samtools_stats.txt
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/trimming/GSM2050748.fastp.json
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/star/xenLae2-GSM2050744.samtools-coordinate-unsieved.bam.mtnucratiomtnuc.json
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/InsertSizeMetrics/xenLae2-GSM2050748.tsv
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/markdup/xenLae2-GSM2050744.samtools-coordinate.metrics.txt
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/InsertSizeMetrics/xenLae2-GSM2050745.tsv
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/trimming/GSM2050749.fastp.json
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/plotCorrelation/xenLae2-deepTools_pearson_correlation_clustering_mqc.png
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/markdup/xenLae2-GSM2050748.samtools-coordinate.metrics.txt
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/InsertSizeMetrics/xenLae2-GSM2050746.tsv
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/plotCorrelation/xenLae2-DESeq2_sample_distance_clustering_mqc.png
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/dupRadar/xenLae2-dupRadar_mqc.png
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/star/xenLae2-GSM2050747.samtools-coordinate-unsieved.bam.mtnucratiomtnuc.json
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/trimming/GSM2050745.fastp.json
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/InsertSizeMetrics/xenLae2-GSM2050747.tsv
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/plotFingerprint/xenLae2.tsv
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/markdup/xenLae2-GSM2050746.samtools-coordinate.metrics.txt
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/trimming/GSM2050744.fastp.json
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/strandedness/xenLae2-GSM2050744.strandedness.txt
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/star/xenLae2-GSM2050746.samtools-coordinate-unsieved.bam.mtnucratiomtnuc.json
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/samplesconfig_mqc.html
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/strandedness/xenLae2-GSM2050745.strandedness.txt
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/strandedness/xenLae2-GSM2050746.strandedness.txt
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/strandedness/xenLae2-GSM2050747.strandedness.txt
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/star/xenLae2-GSM2050748.samtools-coordinate-unsieved.bam.mtnucratiomtnuc.json
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/samtools_stats/final_bam/xenLae2-GSM2050749.samtools-coordinate.samtools_stats.txt
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/plotPCA/xenLae2.tsv
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/samtools_stats/final_bam/xenLae2-GSM2050744.samtools-coordinate.samtools_stats.txt
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/star/xenLae2-GSM2050745.samtools-coordinate-unsieved.bam.mtnucratiomtnuc.json
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/samtools_stats/star/xenLae2-GSM2050748.samtools-coordinate.samtools_stats.txt
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/plotCorrelation/xenLae2-DESeq2_spearman_correlation_clustering_mqc.png
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/markdup/xenLae2-GSM2050745.samtools-coordinate.metrics.txt
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/strandedness/xenLae2-GSM2050748.strandedness.txt
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/plotCorrelation/xenLae2-deepTools_spearman_correlation_clustering_mqc.png
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/trimming/GSM2050747.fastp.json
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/strandedness/xenLae2-GSM2050749.strandedness.txt
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/markdup/xenLae2-GSM2050747.samtools-coordinate.metrics.txt
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/trimming/GSM2050746.fastp.json
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/star/xenLae2-GSM2050749.samtools-coordinate-unsieved.bam.mtnucratiomtnuc.json
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/samtools_stats/final_bam/xenLae2-GSM2050745.samtools-coordinate.samtools_stats.txt
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/samtools_stats/star/xenLae2-GSM2050747.samtools-coordinate.samtools_stats.txt
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/log/workflow_explanation_mqc.html
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/samtools_stats/star/xenLae2-GSM2050745.samtools-coordinate.samtools_stats.txt
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/InsertSizeMetrics/xenLae2-GSM2050744.tsv
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/plotCorrelation/xenLae2-DESeq2_pearson_correlation_clustering_mqc.png
/ceph/rimlsfnwi/data/moldevbio/heeringen/siebrenf/git/seq2science/results/qc/samtools_stats/final_bam/xenLae2-GSM2050747.samtools-coordinate.samtools_stats.txt
Change sample names:
General Statistics
Showing 6/6 rows and 14/29 columns.Sample Name | % Duplication | M Reads After Filtering | GC content | % PF | % Adapter | Insert Size | % Dups | % Mapped | M Total seqs | % Proper Pairs | M Total seqs | Genome coverage | M Genome reads | M MT genome reads |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GSM2050744 | 6.3% | 49.1 | 45.5% | 91.6% | 0.6% | 310 bp | 15.3% | 100.0% | 47.5 | 100.0% | 46.6 | 1.7 X | 47.6 | 1.4 |
GSM2050745 | 8.2% | 55.1 | 45.8% | 91.1% | 0.6% | 332 bp | 17.5% | 100.0% | 52.3 | 100.0% | 51.4 | 1.9 X | 52.2 | 1.6 |
GSM2050746 | 5.5% | 53.4 | 46.2% | 91.6% | 0.6% | 344 bp | 14.6% | 100.0% | 51.8 | 100.0% | 50.9 | 1.9 X | 51.8 | 1.3 |
GSM2050747 | 7.6% | 56.2 | 46.7% | 90.7% | 0.6% | 334 bp | 17.4% | 100.0% | 53.0 | 100.0% | 52.1 | 2.0 X | 53.2 | 1.3 |
GSM2050748 | 12.0% | 58.6 | 46.3% | 91.3% | 0.6% | 327 bp | 26.0% | 100.0% | 56.6 | 100.0% | 55.7 | 2.1 X | 56.6 | 1.5 |
GSM2050749 | 14.6% | 69.5 | 46.5% | 90.6% | 0.6% | 348 bp | 31.1% | 100.0% | 66.2 | 100.0% | 65.1 | 2.4 X | 66.0 | 1.8 |
Workflow explanation
Assembly stats
fastp
fastp An ultra-fast all-in-one FASTQ preprocessor (QC, adapters, trimming, filtering, splitting...).DOI: 10.1093/bioinformatics/bty560.
Filtered Reads
Filtering statistics of sampled reads.
Insert Sizes
Insert size estimation of sampled reads.
Sequence Quality
Average sequencing quality over each base of all reads.
GC Content
Average GC content over each base of all reads.
N content
Average N content over each base of all reads.
Picard
Picard is a set of Java command line tools for manipulating high-throughput sequencing data.
Insert Size
Plot shows the number of reads at a given insert size. Reads with different orientations are summed.
Mark Duplicates
Number of reads, categorised by duplication state. Pair counts are doubled - see help text for details.
The table in the Picard metrics file contains some columns referring read pairs and some referring to single reads.
To make the numbers in this plot sum correctly, values referring to pairs are doubled according to the scheme below:
READS_IN_DUPLICATE_PAIRS = 2 * READ_PAIR_DUPLICATES
READS_IN_UNIQUE_PAIRS = 2 * (READ_PAIRS_EXAMINED - READ_PAIR_DUPLICATES)
READS_IN_UNIQUE_UNPAIRED = UNPAIRED_READS_EXAMINED - UNPAIRED_READ_DUPLICATES
READS_IN_DUPLICATE_PAIRS_OPTICAL = 2 * READ_PAIR_OPTICAL_DUPLICATES
READS_IN_DUPLICATE_PAIRS_NONOPTICAL = READS_IN_DUPLICATE_PAIRS - READS_IN_DUPLICATE_PAIRS_OPTICAL
READS_IN_DUPLICATE_UNPAIRED = UNPAIRED_READ_DUPLICATES
READS_UNMAPPED = UNMAPPED_READS
SamTools pre-sieve
Samtools is a suite of programs for interacting with high-throughput sequencing data.DOI: 10.1093/bioinformatics/btp352.
The pre-sieve statistics are quality metrics measured before applying (optional) minimum mapping quality, blacklist removal, mitochondrial read removal, read length filtering, and tn5 shift.Percent Mapped
Alignment metrics from samtools stats
; mapped vs. unmapped reads.
For a set of samples that have come from the same multiplexed library, similar numbers of reads for each sample are expected. Large differences in numbers might indicate issues during the library preparation process. Whilst large differences in read numbers may be controlled for in downstream processings (e.g. read count normalisation), you may wish to consider whether the read depths achieved have fallen below recommended levels depending on the applications.
Low alignment rates could indicate contamination of samples (e.g. adapter sequences), low sequencing quality or other artefacts. These can be further investigated in the sequence level QC (e.g. from FastQC).
Alignment metrics
This module parses the output from samtools stats
. All numbers in millions.
SamTools post-sieve
Samtools is a suite of programs for interacting with high-throughput sequencing data.DOI: 10.1093/bioinformatics/btp352.
The post-sieve statistics are quality metrics measured after applying (optional) minimum mapping quality, blacklist removal, mitochondrial read removal, and tn5 shift.Percent Mapped
Alignment metrics from samtools stats
; mapped vs. unmapped reads.
For a set of samples that have come from the same multiplexed library, similar numbers of reads for each sample are expected. Large differences in numbers might indicate issues during the library preparation process. Whilst large differences in read numbers may be controlled for in downstream processings (e.g. read count normalisation), you may wish to consider whether the read depths achieved have fallen below recommended levels depending on the applications.
Low alignment rates could indicate contamination of samples (e.g. adapter sequences), low sequencing quality or other artefacts. These can be further investigated in the sequence level QC (e.g. from FastQC).
Alignment metrics
This module parses the output from samtools stats
. All numbers in millions.
deepTools
deepTools is a suite of tools to process and analyze deep sequencing data.DOI: 10.1093/nar/gkw257.
PCA plot
PCA plot with the top two principal components calculated based on genome-wide distribution of sequence reads
Fingerprint plot
Signal fingerprint according to plotFingerprint
Strandedness
Strandedness package provides a number of useful modules that can comprehensively evaluate high throughput RNA-seq data.DOI: 10.1093/bioinformatics/bts356.
Sequencing strandedness was inferred for the following samples, and was called if 60% of the sampled reads were explained by either sense (forward) or antisense (reverse).Infer experiment
Infer experiment counts the percentage of reads and read pairs that match the strandedness of overlapping transcripts. It can be used to infer whether RNA-seq library preps are stranded (sense or antisense).
deepTools - Spearman correlation heatmap of reads in bins across the genome
Spearman correlation plot generated by deeptools. Spearman correlation is a non-parametric (distribution-free) method, and assesses the monotonicity of the relationship.
deepTools - Pearson correlation heatmap of reads in bins across the genome
Pearson correlation plot generated by deeptools. Pearson correlation is a parametric (lots of assumptions, e.g. normality and homoscedasticity) method, and assesses the linearity of the relationship.
dupRadar
Figures generated by [dupRadar](https://bioconductor.riken.jp/packages/3.4/bioc/vignettes/dupRadar/inst/doc/dupRadar.html#plotting-and-interpretation). Click the link for help with interpretation.
DESeq2 - Sample distance cluster heatmap of counts
Euclidean distance between samples, based on variance stabilizing transformed counts (RNA: expressed genes, ChIP: bound regions, ATAC: accessible regions). Gives us an overview of similarities and dissimilarities between samples.
DESeq2 - Spearman correlation cluster heatmap of counts
Correlation cluster heatmap based on variance stabilizing transformed counts. Spearman correlation is a non-parametric (distribution-free) method, and assesses the monotonicity of the relationship.
DESeq2 - Pearson correlation cluster heatmap of counts
Correlation cluster heatmap based on variance stabilizing transformed counts. Pearson correlation is a parametric (lots of assumptions, e.g. normality and homoscedasticity) method, and assesses the linearity of the relationship.
DESeq2 - MA plot for contrast deseq2_ddk1_control
A MA plot shows the relation between the (normalized) mean counts for each gene/peak, and the log2 fold change between the conditions. Genes/peaks that are significantly differentially expressed are coloured blue. Similarily a volcano plot shows the relation between the log2 fold change between contrasts and their p-value.
DESeq2 - PCA plot for deseq2_ddk1_control
This PCA plot shows the relation among samples along the two most principal components, coloured by condition. PCA transforms the data from the normalized high dimensions (e.g. 20.000 gene counts, or 100.000 peak expressions) to a low dimension (PC1 and PC2). It does so by maximizing the variance along these two components. Generally you expect there to be more variance between samples from different conditions, than within conditions. This means that you would "expect" similar samples closeby each other on PC1 and PC2.
Samples & Config
sample | assembly | descriptive_name | deseq2 |
---|---|---|---|
GSM2050744 | xenLae2 | UCA | control |
GSM2050745 | xenLae2 | DKKB | ddk1 |
GSM2050746 | xenLae2 | UCC | control |
GSM2050747 | xenLae2 | DKKD | ddk1 |
GSM2050748 | xenLae2 | UCE | control |
GSM2050749 | xenLae2 | DKKF | ddk1 |
# tab-separated file of the samples
samples: samples.tsv
# pipeline file locations
result_dir: ./results # where to store results
genome_dir: ./genomes # where to look for or download the genomes
# fastq_dir: ./results/fastq # where to look for or download the fastqs
# contact info for multiqc report and trackhub
email: yourmail@here.com
# produce a UCSC trackhub?
create_trackhub: false
# how to handle replicates
technical_replicates: merge # change to "keep" to not combine them
# which trimmer to use
trimmer: fastp
# which quantifier to use
quantifier: htseq # or salmon or featurecounts
# which aligner to use (not used for the gene counts matrix if the quantifier is Salmon)
aligner: star
# filtering after alignment (not used for the gene counts matrix if the quantifier is Salmon)
remove_blacklist: true
min_mapping_quality: 255 # (only keep uniquely mapped reads from STAR alignments)
only_primary_align: true
remove_dups: false # keep duplicates (check dupRadar in the MultiQC)
# differential gene expression analysis
# for explanation, see: https://vanheeringen-lab.github.io/seq2science/content/DESeq2.html
contrasts:
- deseq2_ddk1_control